![]() |
猫式/ベクトル積分演算子 のバックアップ(No.2) |
ベクトル積分と置換積分公式 3次元空間でのベクトル積分と言えば、線積分 名前の「線」「面」「体」は伊達ではなく、これらの公式はある種の「次元」を超えている。大抵の説明は複雑な図と面倒な成分計算を使うが、それは通常のベクトル計算では「次元」超えに無理があるためで、微分形式と外積代数を使えば、もっと効率良く扱える。しかし、記号の衝突があって、ベクトルと外積代数の橋渡しに苦労が多い。 ベクトル積分をショートカットするには外積代数を使うべき。そのためにはベクトル演算と外積代数の演算を両立させる表記が必要。話しが多分野に渡り、大きくなるため、置換積分の話しは数回に分割する。初回は通常のベクトル演算のみで頑張り、外積代数は次回から導入する。 今回作戦は、まず、ベクトル微分演算子 ベクトル積分演算子 ベクトル微分演算子の時と同様、表記を機能毎に独立させた方が操作しやすい。ベクトル積分の場合は、ベクトル、積分、範囲の3つの機能を併せ持つ。 積分の演算子表記 猫式では 1次元の場合、 また、微分演算子のように、式変形が便利のように以下の書式も許す。
積分の階数表記 3次元における線積分、面積分、体積分の微小要素を成分で書くと、線要素 これを回避するため、猫式では微小要素の記号に階数を記入する。 以上の規則を導入すると、各積分は次のようになる。
ベクトル置換積分 猫式では置換積分は次のように書き換わる。
作用対象の 演算子としては成立すべき式ではあるが、残念ながらベクトル演算のみでは導けない。したがって、今回の真面目な話はココまで。 イカサマ置換積分 ここからはふざけててみます。外積代数を習うまでに苦労して開発したイカサマ計算なり。 ガウスの定理の無理な計算 先に偶然に成立してしまうガウスの定理から。
ストークスの定理の無理な計算 続いて、同じ手順をストークスの定理に。
はい、外積と除算の結果、ゼロ。 ストークスの定理の無理な計算を通させるイカサマ規則 上の計算は、実は初っぱなのスカラ三重積からもう成立してない。しかし、逆から計算すれば分かるが、減算の項さえなければ成立する、という非常に惜しい形で破綻している。 このため、 そもそも論すらないが、証拠。
まとめ・つなぎ このイカサマ規則は、ストークスの定理を両辺から計算し、違いを吸収するルールとして導入した。目的は、あくまでも3次元ベクトル演算の範囲内で、図を借りずに置換積分を得るだった。上では細かく書いているが、 ガウスの定理: ストークスの定理: さらに、このイカサマも捨てたものではない。実は、ベクトルの次元に関係無く、積分の「次元」を跨がる全ての置換積分に効く。ガウスの定理も減算項が無かったためにイカサマせずに済んだようなもの。微分形式と外積代数から、このイカサマもまた意味を持っていることが分かる。 というわけで、次回は微分形式と外積代数を導入。でも、タイトルは基底成分表記(仮)。 |