• 追加された行はこの色です。
  • 削除された行はこの色です。
%indent
$$$
   \vec H = \left(\! \ffd{1}{4 \pi} \!\right)
   \int\! \ffd{dq(\vec r - \vec r \,')}{|(\vec r - \vec r \,')|^3}
$$$

$$$
   \vec H = \ffd{1}{4 \pi}
   \int\! \ffd{\vec r - \vec r \,'}{|\vec r - \vec r \,'|^3} dq
$$$

$$$
   \vec H = \ffd{1}{4 \pi}
   \int\!\! \ffd{\vec r - \vec r \,'}{|\vec r - \vec r \,'|^3}\, dq
$$$

$$$
   a \times b = \sum_{i = 1}^a \sum_{j = 1}^b 1 = \sum_{j = 1}^b \sum_{i = 1}^a 1 = b \times a
$$$
$$$
   \sum_{i = 1}^a \sum_{j = 1}^b 1
$$$


$$$
   \begin{array}{l}
     x^2 + 25x - 144
     \\ =\left(x-\ffd{25-\sqrt{1201}}2\right)\left(x-\ffd{25+\sqrt{1201}}2\right)
   \end{array}
$$$

$$ abcdefghijklmnopqrstuvwxyz $$
$$ abc dx dy $$

$$ \iro[ak]{c\tau} $$
$$ \iro[ak]{ct} $$
$$ \iro[ao]{vt} $$
$$ \iro[ak]{(c\tau)^2} = \iro[ak]{(ct)^2} - \iro[ao]{(vt)^2} $$

$$ c\tau = \sqrt{c^2 - v^2}\sx t $$
$$ \tau = \sqrt{1 - \ffd{v^2}{c^2}}\sx t $$

$$$
\underbrace{4+4+4+4+4+4}_{5.3}
$$$
$$$
\underbrace{\overbrace{4}^{1\;\;}+\overbrace{4}^{1\;\;}+\overbrace{4}^{1\;\;}+\overbrace{4}^{1\;\;}+\overbrace{4}^{1\;\;}+\overbrace{4}^{0.3\;\;}}_{5.3}
$$$

$$$
4\;\underbrace{\overbrace{\;+\;\;\,4\;}^{1\;\;}\; \overbrace{\;+\;\;\,4\;}^{1\;\;}\; \overbrace{\;+\;\;\,4\;}^{1\;\;}\; \overbrace{\;+\;\;\,4\;}^{1\;\;}\; \overbrace{\;+\;\;\,4\;}^{0.3\;\;}}_{4.3}
$$$
$$ \iro[mr]{\theta} $$$$ \iro[mr]{\:b} $$$$ \iro[ao]{\:b_x} $$$$ \iro[ak]{\:b_y} $$
$$ \iro[gy]{\:a} $$$$ \iro[mr]{\:b'} $$$$ \iro[ao]{\:b_x'} $$$$ \iro[ak]{\:b_y'} $$
$$ \iro[gy]{\:a_x} $$
$$ \iro[gy]{\:a_y} $$


    数学 一覧 検索 最新 バックアップ リンク元   ヘルプ   最終更新のRSS