1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
| | %indent
2
左+&fr{分子};&ac{分母};+右
左−&fr{分子};&ac{分母};−右
左=&fr{分子};&ac{分母};=右
左=&fr{$$ A $$個};&ac{$$ B $$本};=右
左=&fr{&fr{$$ A $$個};&ac{$$ B $$本};};&ac{&fr{$$ C $$個};&ac{$$ D $$本};};=右
$$ A\frac{\text{分子}Y}{\text{分母}X} $$
$$ {\mathfrak d} $$
$$ {\mathcal d} $$
$$ A+B=C $$
$$ B+A=C $$
$$ C-A=B $$
$$ C-B=A $$
$$ A^B=C $$
$$ B^A=C $$
$$ \log_A C = B $$
$$ \log_B C = A $$
$$ \rt[B]C = A $$
$$ \rt[A]C = B $$
$$ \ffd89 \div \ffd23 = \ffd{\overset{4}{\cancel{8}}}{9} \div \ffd{\overset{1}{\cancel{2}}}{3} = \ffd{4}{\underset{3}{\cancel{9}}} \div \ffd{1}{\underset{1}{\cancel{3}}} = \ffd43 $$
$$ \ffd89 \times \ffd23 = \ffd{8\times2}{9\times3} = \ffd{16}{27} $$
$$ \ffd89 \div \ffd23 = \ffd{\overset{4}{\cancel{8}}\div\cancel{2}}{\underset{3}{\bcancel{9}}\div\bcancel{3}} = \ffd{4}{3} $$
$$ \ffd34 $$ $$ \div $$ $$ 6 $$ $$ \times $$ $$ 4 $$ $$ = $$ $$ 3 $$ $$ \ffd43 $$ $$ 1 $$ $$ 8 $$
$$ 6^3 =\underset{i,j,k \,\in\, [1,6]}{\sum\sum\sum}1 $$
$$ {}_6\mathrm{P}_3 =\underset{i \neq j \neq k \neq i}{\underset{i,j,k \,\in\, [1,6]}{\sum\sum\sum}}1 $$
$$ {}_6\mathrm{C}_3 =\underset{i < j < k}{\underset{i,j,k \,\in\, [1,6]}{\sum\sum\sum}}1 $$
$$ N =\underset{i \neq j \,\land\, j \neq k \,\land\, k \neq i}{\underset{i,j,k \,\in\, [1,6]}{\sum\sum\sum}}1 $$
$$ \sum_{i=0}^{n} 10^i $$
$$ \pi r $$ $$ 2 \pi r $$ $$ r $$ $$ \pi r^2 $$ $$ h $$
$$ 2 \pi r h $$
$$ a = r \theta $$ $$ h $$
$$ x $ y $ z $ 0 $ 1 $$
$$ S_{xy} $$$$ S_{zy} $$$$ S_{xz} $$
$$ V_{xy} $$$$ V_{zy} $$$$ V_{xz} $$
$$ \iro[ak]\alpha $$
$$ \iro[ao]\beta $$
$$ \iro[mr]{\alpha - \beta} $$
$$ \iro[ak]{A = (\cos\alpha, \sin\alpha)} $$
$$ \iro[ao]{B = (\cos\beta , \sin\beta )} $$
$$ \iro[mr]{C = A + B} $$
$$ \iro[md]{O} $$
$$ \iro[md]{1} $$
$$ \iro[md]{x} $$
$$ \iro[md]{y} $$
$$ \iro[mr]{S} $$
$$ \lim_{n\to\infty} \ffd{n\sin(360^\circ/n)}{2} = \pi \,\Longrightarrow\, \lim_{\theta\to0} \ffd{360^\circ\sin\theta}{2\theta} = \pi$$
$$ \lim_{n\to\infty} \ffd{n\sin(1_c/n)}{2} = \pi \,\Longrightarrow\, \lim_{\theta\to0} \ffd{1_c\sin\theta}{2\theta} = \pi$$
$$ \lim_{n\to\infty} \ffd{n\sin(360^\circ/n)}{2} = \pi \,\Longrightarrow\, \lim_{\theta\to0} \ffd{360\sin^\circ\theta}{2\theta} = \pi$$
$$ \sum_{k=0}^n a_k $$
$$ \prod_{k=0}^n a_k $$
$$ \ddd{y}{x}\Big|_{x=3} $$
$$ \int_0^1 \!\Big[ \ffd{x^2y}{2} \Big]_{x=0}^{x=y}\,\mathrm{d}y $$
$$ f(x) \ast g(x) = \!\int_{-\infty}^{\infty} \!\! f(t)\,g(x-t)\,\mathrm{d}t $$
|