基底 $$ \:e_n $$ の逆 EditToHeaderToFooter

軸と軸が直交しない座標系では、双対基底(dual basis)なるものが登場する。
要は、1組の基底では手に負えないから2組の基底で何とかする話。

習慣的には次のように、双対基底の片方を右下添字で表記し、もう片方を右上添字で表記する。
しかし、右上添字は指数表記に使われおり、非常に紛らわしい。
一応、多くの場合は文脈で判断できるが、実際に衝突する場合があるし、記号系としても曖昧なのは良くない。

$$ \:e_x $$$$ \:e_y $$$$ \:e_z $$

$$ \:e^x $$$$ \:e^y $$$$ \:e^z $$

さらに問題なのは、両方の基底を添字の位置で関連づけるため、計算的ではない。
また、$$ dx $$$$ dy $$$$ dz $$が基底になる微分代数など、添字が無い場合も制約になる。
この場合は$$ dx_1 $$$$ dx_2 $$$$ dx_3 $$$$ dx^1 $$$$ dx^2 $$$$ dx^3 $$に書き換えば計算できるが、ベクトルと微分の繋がりが見えにくくなってしまう。

これに対し、凌宮数学では以下のように双対基底の表記を定義する。

 双対基底
正基底逆基底
通常表記$$ \:e_x $$$$ \:e_y $$$$ \:e_z $$$$ \:e^x $$$$ \:e^y $$$$ \:e^z $$
凌宮表記分数表記$$ \:e_x $$$$ \:e_y $$$$ \:e_z $$$$ \ffd{1}{\:e_x} $$$$ \ffd{1}{\:e_y} $$$$ \ffd{1}{\:e_z} $$
指数表記$$ \:e_x^{-1} $$$$ \:e_y^{-1} $$$$ \:e_z^{-1} $$
指数略記$$ \:e_x^- $$$$ \:e_y^- $$$$ \:e_z^- $$

分数表記を用いたのは、双対基底の定義のうち$$ \:e_x $$$$ \sx $$$$ \:e^x $$$$ = $$$$ 1 $$を満たすため。
理屈は次節で述べるとして、要は直観的に分数で理解すべきに尽きる。

指数表記は、単にスカラの逆数が$$ -1 $$乗に書けるのに合わせているだけ。
指数略記は、式ではなく、$$ \:e^x $$のように一塊で扱いたい場合の記号である。

また、正基底と逆基底が互いに双対であるため、逆基底の逆基底は$$ \ffd{1}{\:e_x^-} $$$$ = $$$$ \ffd{1}{\ffd{1}{\:e_x}} $$$$ = $$$$ \:e_x $$のように正基底に戻る。

双対基底の定義式 EditToHeaderToFooter

3次元の場合、双対基底の定義を通常表記で書くと、こうなる:

$$ \:e_x $$$$ \sx $$$$ \:e^x $$$$ = $$$$ 1 $$

$$ \:e_x $$$$ \sx $$$$ \:e^y $$$$ = $$$$ 0 $$

$$ \:e_x $$$$ \sx $$$$ \:e^z $$$$ = $$$$ 0 $$

$$ \:e_y $$$$ \sx $$$$ \:e^x $$$$ = $$$$ 0 $$

$$ \:e_y $$$$ \sx $$$$ \:e^y $$$$ = $$$$ 1 $$

$$ \:e_y $$$$ \sx $$$$ \:e^z $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \:e^x $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \:e^y $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \:e^z $$$$ = $$$$ 1 $$

これを凌宮表記で書くと:

$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ 1 $$

$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_y} $$$$ = $$$$ 0 $$

$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_z} $$$$ = $$$$ 0 $$

$$ \:e_y $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ 0 $$

$$ \:e_y $$$$ \sx $$$$ \ffd{1}{\:e_y} $$$$ = $$$$ 1 $$

$$ \:e_y $$$$ \sx $$$$ \ffd{1}{\:e_z} $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \ffd{1}{\:e_y} $$$$ = $$$$ 0 $$

$$ \:e_z $$$$ \sx $$$$ \ffd{1}{\:e_z} $$$$ = $$$$ 1 $$

このうち、$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ 1 $$など内積が$$ 1 $$の定義式は、表記の定義に利用しているために小学校レベルになる。

残り、内積が$$ 0 $$の定義式も、一義に定まらないベクトル除算を一つに絞るための必須条件として解釈すれば、表記に含まれることになる。
図1は通常のベクトル除算である。$$ \:e_x $$との内積が$$ 1 $$のベクトルは幾らでもある。
図2は基底のベクトル除算である。$$ \:e_x $$以外の基底と垂直という垂直条件を追加すれば、解が1つに絞れる。
このセットで考えるのが、基底が通常のベクトルとの違いであり、逆基底を定義できる理由である。

図1:ベクトル除算図2:基底除算
ベクトル除算.png基底除算.png

逆基底の計算式 EditToHeaderToFooter

3次元の場合、垂直条件:$$ \ffd{1}{\:e_x} $$$$ \perp $$$$ \:e_y $$かつ$$ \ffd{1}{\:e_x} $$$$ \perp $$$$ \:e_z $$であるため、$$ \ffd{1}{\:e_x} $$$$ /\!/ $$$$ \:e_y $$$$ \vx $$$$ \:e_z $$という関係が成り立つ。
このため、任意の比例定数$$ k $$を使って、$$ \ffd{1}{\:e_x} $$$$ = $$$$ k $$$$ \:e_y $$$$ \vx $$$$ \:e_z $$と書ける*1

正規条件:$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ 1 $$より、$$ 1 $$$$ = $$$$ \:e_x $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ = $$$$ k $$$$ \:e_x \sx (\:e_y \vx \:e_z ) $$
$$ \:e_x \sx (\:e_y \vx \:e_z ) $$はスカラであるため、$$ k $$$$ = $$$$ \ffd{1}{\:e_x \sx (\:e_y \vx \:e_z )} $$

よって、$$ \ffd{1}{\:e_x} $$$$ = $$$$ k $$$$ \:e_y $$$$ \vx $$$$ \:e_z $$$$ = $$$$ \ffd{\phantom{\:e_x \sx (}\:e_y \vx \:e_z\phantom{)}}{\:e_x \sx (\:e_y \vx \:e_z )} $$
したがって、逆基底表記$$ \ffd{1}{\:e_x} $$は、$$ \ffd{\phantom{\:e_x \sx (}\:e_y \vx \:e_z\phantom{)}}{\:e_x \sx (\:e_y \vx \:e_z )} $$$$ \ffd{\phantom{\sx (}\:e_y \vx \:e_z\phantom{)}}{\sx (\:e_y \vx \:e_z )} $$を記号的に省いたものと捕らえて良い。

ただし、具体的に何が省かれるかは次元によって異なる。
1次元では何も省かれずにスカラ除算として成立する。2次元では例えば$$ \ffd{\phantom{\vx}\:e_y}{\vx \:e_y} $$が省かれる*2*3
4次元以上では、書くだけでも4次元のベクトル積*4を表せる外積代数*5の知識が必要だが、イメージするだけなら直観的に残りの基底を掛け合わせた分母と分子を省く感覚で良い。

*1 計算自体は、参考:[物理のかぎしっぽ / ベクトル解析 / 双対基底] が丁寧で分かりやすい。
*2 ただし、ここの$$ \vx $$は高校でも大学でも教えて貰えない2次元の外積である。
*3 2次元の外積については、[高専における数学教育の見直し 数学談話会 / 第5回 / 詫間電波工業高等専門学校 / 2次元ベクトルの外積の効用(線形代数学の教科内容の改善に向けて)] がお勧め。
*4 参考:[物理のかぎしっぽ / 微分形式 / 四次元の微分形式]
*5 具体的にホッジ作用素が基底の除算に該当する。参照:[物理のかぎしっぽ / 微分形式 / ホッジ作用素]

$$ A^x $$はベクトル$$ \:A $$$$ x $$成分である。 EditToHeaderToFooter

双対基底で考える場合、習慣的には以下のように成分と基底の添字を上下逆の付き方で書く*6

$$ \:A $$

$$ = $$$$ A^x $$$$ \:e_x $$$$ + $$$$ A^y $$$$ \:e_y $$$$ + $$$$ A^z $$$$ \:e_z $$

$$ = $$$$ A_x $$$$ \:e^x $$$$ + $$$$ A_y $$$$ \:e^y $$$$ + $$$$ A_z $$$$ \:e^z $$

双対基底で成分分解する場合は、ベクトルと逆基底の内積で成分を割り出せる*7
例えば、$$ \:A $$$$ = $$$$ A^x $$$$ \:e_x $$$$ + $$$$ A^y $$$$ \:e_y $$$$ + $$$$ A^z $$$$ \:e_z $$$$ \ffd{1}{\:e_x} $$との内積を取ると:

$$ \:A $$$$ \sx $$$$ \ffd{1}{\:e_x} $$

$$ = $$$$ (A^x \:e_x) $$$$ \sx $$$$ \ffd{1}{\:e_x} $$$$ + $$$$ (A^y \:e_y) $$$$ \sx $$$$ \ffd{1}{\:e_y} $$$$ + $$$$ (A^z \:e_z) $$$$ \sx $$$$ \ffd{1}{\:e_z} $$

$$ = $$$$ A^x $$$$ (\cancelto{1}{\:e_x \sx \ffd{1}{\:e_x}}) \;\, $$$$ + $$$$ A^y $$$$ (\cancelto{0}{\:e_y \sx \ffd{1}{\:e_y}}) \;\, $$$$ + $$$$ A^z $$$$ (\cancelto{0}{\:e_z \sx \ffd{1}{\:e_z}}) \;\, $$

$$ = $$$$ A^x $$

よって、$$ y $$成分と$$ z $$成分も同様に求まり、これらを$$ \:A $$$$ = $$$$ A^x $$$$ \:e_x $$$$ + $$$$ A^y $$$$ \:e_y $$$$ + $$$$ A^z $$$$ \:e_z $$に代入すると次のようになる:

$$ \:A $$$$ = $$$$ \Big(\:A \sx \ffd{1}{\:e_x} \Big) $$$$ \:e_x $$$$ + $$$$ \Big(\:A \sx \ffd{1}{\:e_y} \Big) $$$$ \:e_y $$$$ + $$$$ \Big(\:A \sx \ffd{1}{\:e_z} \Big) $$$$ \:e_z $$

ベクトルと逆基底の内積を分数表記に纏めると、分かりやすい式になる。

$$ \:A $$$$ = $$$$ \ffd{\:A}{\:e_x} $$$$ \:e_x $$$$ + $$$$ \ffd{\:A}{\:e_y} $$$$ \:e_y $$$$ + $$$$ \ffd{\:A}{\:e_z} $$$$ \:e_z $$

1次元では、スカラ除算として$$ A $$$$ = $$$$ \ffd{A}{e_x} e_x $$になるため、ベクトルになって成分が増える感覚のままで良い。
この割る感覚を多次元に残すことも逆基底に分数表記を用いた理由の一つである。

*6 実際問題、基底の右上添字よりも、この成分の右上添字の方が指数の添字と衝突しやすい
*7 参考:[物理のかぎしっぽ / ベクトル解析 / ベクトルの成分を表す]が丁寧で分かりやすい

微分のベクトル扱い EditToHeaderToFooter

微分形式では、微分$$ dx $$$$ dy $$$$ dz $$自体をベクトルとして扱う。
凌宮表記を用いると、その逆基底は$$ \ffd{1}{dx} $$$$ \ffd{1}{dy} $$$$ \ffd{1}{dz} $$と表記される。
記号的には、任意の微分$$ dA $$*8に対し、正基底は$$ \int\!\!\!\!\int \! dA \, dx $$のように積分を、逆基底は$$ \ddd{A}{x} $$のように微分*9を作る。

最後に、成分分解を書くと、記号的に自ずと全微分の公式が得られる*10

$$ dA $$$$ = $$$$ \ddd{A}{x} dx $$$$ + $$$$ \ddd{A}{y} dy $$$$ + $$$$ \ddd{A}{z} dz $$

*8 微分形式では全微分であればベクトルと見なす。
*9 一般的には、この微分は偏微分として$$ \ppd{A}{x} $$と基底とは異なる記号で表記されるが、逆基底を基底として扱えば微分記号で区別する必要が無くなる。
*10 偏微分も$$ d $$で書くことになるが。

まとめ・つなぎ EditToHeaderToFooter

成分計算の嵐であるベクトル解析でも、分数表記で逆基底を定義すれば、小学校から養った割り算の感覚を持ち込める。
そして、大学でベクトルとして扱われる微分の公式もベクトルの公式と同じ形になる。

ベクトルは小学校から大学まで随所登場するため、凌宮数学では逆基底の表記が至る所に登場する。
その都度、割り算のベクトル版と思えば公式が簡単に見えてくる。

fileベクトル除算.png 619件 [詳細] file基底除算.png 628件 [詳細]
    数学 一覧 検索 最新 バックアップ リンク元   ヘルプ   最終更新のRSS